Alterations in glycoprotein gB specified by mutants and their partial revertants in herpes simplex virus type 1 and relationship to other mutant phenotypes.

نویسندگان

  • M L Haffey
  • P G Spear
چکیده

The tsB5 mutant of herpes simplex virus type 1 (HSV-1) strain HFEM was shown previously to be temperature sensitive for accumulation of the mature form of glycoprotein gB, for production or activity of a factor required in virus-induced cell fusion, and for production of virions with normal levels of infectivity. In addition, a previous study showed that virions produced by tsB5 at permissive temperature were more thermolabile than HFEM virions and contained altered gB that did not assume the dimeric conformation characteristic of HFEM. Results presented here demonstrate that, at permissive temperature, tsB5 differs from HFEM in another respect: plaques formed by tsB5 are syncytial on Vero cells (but not on HEp-2 cells), whereas plaques formed by HFEM are nonsyncytial on both cell types. In addition, our results indicate that tsB5 produces an oligomeric form of gB, but that it differs in electrophoretic mobility and stability from the gB dimers of HFEM. The major purpose of this study was to investigate the dependence of the various tsB5 mutant phenotypes on the temperature sensitivity of gB accumulation and on the alterations in oligomeric conformation of gB produced at permissive temperature. For this work the following HSV-1 strains related to tsB5 or HFEM were analyzed: (i) phenotypic revertants selected from tsB5 stocks for nonsyncytial plaque morphology on Vero cells or for ability to form plaques at restrictive temperature (38.5 degrees C); (ii) a plaque morphology variant of HFEM selected for its syncytial phenotype on Vero cells; (iii) temperature-sensitive recombinants previously isolated from a cross between tsB5 and the non-temperature-sensitive syncytial strain HSV-1(MP); and (iv) a phenotypic revertant selected from one of the recombinant stocks for its ability to form plaques at 39 degrees C. These strains were all compared with tsB5 and HFEM at three different temperatures in two different cell lines with respect to plaque formation, yield of infectious progeny, virus-induced cell fusion, and accumulation of gB. The results of our analyses on all the strains tested revealed the following correlations between mutant phenotypes and the accumulation and oligomeric conformation of gB. (i) There was a direct and quantitative relationship between the accumulation in infected cells of infectious progeny and of the mature form of gB, providing strong support for the hypothesis that this form of gB is necessary to the production of infectious virions. The oligomeric conformation of gB characteristic of HFEM is apparently not required for virion infectivity; nor was virion thermostability necessarily related to the presence of the HFEM-like oligomeric form of gB. (ii) The previously reported correlation between temperature sensitivity of gB accumulation and virus-induced cell fusion was confirmed for tsB5 and extended to other virus strains, and coordinate reversion of these traits was also demonstrated, providing support for the hypothesis that gB has a role in virus-induced cell fusion. At 37 degrees C, intermediate between permissive and restrictive temperatures, some of the mutants and partial revertants induced cell fusion despite reduced accumulations of the mature form of gB, suggesting that the amount of mature gB present did not determine the extent of fusion and that other forms of gB as well as other factors should be investigated with regard to the process of cell fusion. (iii) Some of the mutants and partial revertants could form plaques at 38.5 degrees C despite reduced accumulations of gB and infectious progeny, indicating that the cell-to-cell transmission of viral infection may be at least in part independent of these factors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Developing oncolytic Herpes simplex virus type 1 through UL39 knockout by CRISPR-Cas9

Objective(s): Oncolytic Herpes simplex virus type 1 (HSV-1) has emerged as a promising strategy for cancer therapy. However, development of novel oncolytic mutants has remained a major challenge owing to low efficiency of conventional genome editing methods. Recently, CRISPR-Cas9 has revolutionized genome editing.Materials and Methods: I...

متن کامل

Replication Characteristics of Herpes Simplex Virus Type-1 (HSV-1) Recombinants in 3 Types of Tissue Cultures

A complication in the analysis of the role of ICP34.5 gene in the herpes simplex virus type-1 (HSV-1) lifecycle is the presence of overlapping antisense gene, open reading frame P (ORF P), which is also deleted in HSV-1 ICP34.5 negative mutants. A HSV-1 wild type strain (17+) ICP34.5/ORF P deletion mutant (1716) is totally avirulent in animal models and impaired in a number of in vitro function...

متن کامل

Construction of an Eukaryotic Expression Vector Encoding Herpes Simplex Virus Type 2 Glycoprotein D and In Vitro Expression of the Desired Protein

To construct of an eukaryotic expression vector encoding herpes simplex virus type 2 (HSV-2) glycoprotein D (gD2), an Iranian isolate of HSV-2 was propagated in HeLa cell line and its DNA was extracted and used as template in polymerase chain reactions (PCR), to amplify gD2 gene. Primers were designed and the restriction enzyme sites for EcoRI and XhoI were considered at their 5′ ends respectiv...

متن کامل

Expression of the Herpes Simplex Virus Type 2 Glycoprotein D in Baculovirus Expression System and Evaluation of Its Immunogenicity in Guinea Pigs

Background: Herpes simplex virus type 2 (HSV-2) is highly prevalent and major cause of genital herpes in humans. The life-long nature of infection and the increasing prevalence of genital herpes imply that vaccination is the best strategy for controlling the spread of infection and limiting HSV disease. HSV glycoprotein D (gD) is one of the most important viral immunogen which has an essential ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 35 1  شماره 

صفحات  -

تاریخ انتشار 1980